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diffusion approximation for radiation in a gas is improved considerably, the range of
validity of the approximation being extended to lower values of optical thickness.

Introduction

Tmmmu. radiation in a gas is generally complicated
by the fact that the radiation passing a given plane originates at
points throughout the gas. This leads to the necessity of solving
an integral equation [1].! However, if the gas is optically thick,
the mean free path for the radiant energy may be small com-
pared with the overall dimensions of the system. Under these
conditions the radiation can be considered as a diffusion process,
and the problem reduces to one of solving a modified heat conduc-
tion equation [2, 3].

Although the diffusion approximation works well in the interior
of a gas, it is not accurate near boundaries. Thus, except for ex-
tremely large optical thicknesses, considerable error may be made
in the calculation of radiant heat transfer through a gas for given
temperatures of the bounding walls. This is illustrated in Fig. 2.

In the present paper the diffusion equations for the thermal
radiation in a nongray gas are first generalized by including
spacial derivatives of higher order than the first. The range of
applicability of the diffusion approximation is extended by in-
troducing higher order jump boundary conditions at the walls.

* Numbers in brackets designate References at end of paper.
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Shorin [4] has used first order jump boundary conditions, but in-
asmuch as his results for large optical thickness differ from those
obtained from exact solutions, it seems desirable to reexamine the
whole problem. Konakov [5] has also considered the effect of
walls on radiation. Although he did not use jump boundary con-
ditions, his results are similar to those of Shorin, in that they do
not reduce to the correct form for large optical thicknesses [6].

The fact that the temperature in the gas next to a wall should
differ from the wall temperature can be seen physically as follows:
The radiative flux passing through a plane next to a wall is made
up of flux coming from the wall and from gas which, on the
average, i3 a radiation mean free path away from the wall. Thus
the average temperature of the radiation passing through the
plane next to the wall will lie between the wall temperature and
the temperature a mean free path away from the wall. This effect
is similar to the temperature jump next to a wall which occurs in
heat transfer by conduction in rarefied gases.

Throughout the analysis the heat transfer is assumed to be en-
tirely by radiation, the effects of conduction being assumed
negligible. This would be an allowable assumption, for instance,
at very high temperatures. When the effects of conduction are not
negligible, the conduction and radiation are not strictly additive
because of the nonlinearity of the equations. However, calcula-
tions made in reference [7] indicate that the error made in as-
suming that they can be added lies between 0 and 9 percent.

In the next section the equation for the radiant heat transfer in
a gas, as well as for the energy jump at a wall, will be derived. A
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teralized equations are obtained for radiative diffusion in a nongray gas and for the
energy jump at o wall. By wusing the second-order emergy jump at a wall, the

Nomenclature
A = area (see Fig. 1) h = Planck’s constant, heat-transfer k, = Rosseland mean absorption co-
¢ = velocity of light d coeef(iiic;ent 20) ?ﬁét;ient defined by equation
. I = defin uation 1
= s;.)ecxﬁc heat at constant pressure k= Boltzmaxfn?:constmst k, = mean absorption coefficient de-
D = dia L = thickness of gas space fined by equation (19)
dE, = emission from dr at frequency » Q’ = heat source per unit volume x, = spectral absorption coefficient
which passes through d4 ¢ = radiant beat transfer per unit area A = defined by equation (33)
dE,; = radiant flux at frequency v pass- ¢, = radiant heat transfer per unit Q = defined by equation (4)
ing through dA from above area per unit frequency incre- p = gas density
(see Fig. 1) ment I' = Gamma function
dE,; = radiant flux at frequency v pass- r = radius o = Stefan-Boltzmann constant =
ing through d4 from below (see T = absolute temperature 1.714 X 10* Btu/(hr)({t*)(B*}
Fig. 1) { = time 7 = volume .
e, = total emissive power of black u = gas velocity @ = solid angle, steradians
wall, T,* z = coordinate defined by Fig. 1  sybscripts
e, = total emissive power of gas, oT'* measured in direction of gas  , _ refers to center line
e, = spectral emissive power of gas flow w = refers to wall
given by Planck’s distribution y = coordinate defined by Fig. 1 z = indirection z
function, equation (14) z = coordinate defined by Fig. 1 0 = defined in Fig. 1, also refers to gas at
e, = spectral emissive power of black € = wall emissivity wall
wall given by Planck’s distribu- 6, = angles in spherical coordinate 1 = refers to inner radius, except in E,,
tion function, equation (14) gystems, 0 defined in Fig. 1 2 = refers to outer radius, except in E,»
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Fig. 1 Skelch for deriving diffusion equations

nongray gas bounded by gray walls will be considered. The ab-
sorption coefficient is assumed not to vary appreciably over a
mean free path for the radiation.

Basic Equations

To obtain the generalized diffusion equations for the radiation
in a gas, together with the jump boundary condition at a wall,
consider the radiation streaming through an area element d4 at
point (Zo, ¥, z) from a volume element of gas dr at (z, y, 2) (Fig.
1). The spectral emissive power e, at (z, ¥, z) can be related to
conditions at (zy, %o, 20) by expanding ¢, in a three-dimensional
Taylor series about (2, %, 20). This gives
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Fig. 2 Thermal radiation between flat surfaces with intervening station-
ary gas. Solid curves calculated from equation (26).
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where

Qn, v, 8) =

If we apply the binomial theorem twice to the factor in brackets
we obtain

Z Z Z (z =2y — wrrE — )

w00 520 (n — v)(v — 8)ls!

) (1)
[

The emission

o"e,
bzu —vayv —lazl
The symbols are defined in the Nomenclature.
from dr at frequency » which passes through d4 is

dE, = 4k.edr L) e~ 5" 2}
4T

In order for the exponential factor in equation (2) to be applica-~
ble, the assumption must be made that the spectral absorption
coefficient «, is effectively uniform over a mean free path for the
radiation.

The solid angle dw equals dA4 cos 8/r* and
dr = rsin 0 dr d¢ df

We can write equations (1) and (2) in spherical coordinates with
origin at d4 by setting

z—1xzp=rsinfcosy, y — y = rsinfsine,

z2— 2 =rcosf

From the preceding equations, the total radiant flux per unit
frequency increment passing through d4 from above is
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(n — v)lw — 8)s'T ("—“;—5)

and I is the Gamma function.
In order to obtain the radiation from below, we let 8 go from
/2 to T, instead.of from O to 7/2, and take the negative value of

the result:
()
Dz QY 0zt /4

dE,, = —f—l-z:: Z Z (—1)"~Q(n, v, s)
(5)

02=02s=0

The net radiant heat transfer per unit area per unit frequency in-
crement passing through dA in the direction z is

dEﬂ - dEvl
d4

2 z___: 20 [1 - (_l)n—vlg(n, v 3) KL

e,
: (bzn —vbyv _'b$'>o ( 6)

Similar expressions can be obtained for ¢,, and g,..

Qvs =

Next the energy jump at a gray wall which is immediately be-
low but not touching the area d4 will be obtained. As before, the
radiation passing through the area from above is given by equa-
tion (3). The energy coming from the wall and passing through
dA is made up of radiation emitted by the wall and that reflected
from the wall, the latter having been originally emitted by the
gas. Thus
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dE,» = eedA + (1 — e)dE,, (7
where ¢ is the wall emissivity and e,s is the spectral emissive power
for a black wall. Solving equation (7) for e,s,

_ __1’ dE,, — dEn dﬂ
o= A A

11y, L1 dB
_(f 2)q»l+2qn+dA (8)

Substituting equations (3) and (6) in (8) and removing the term
for n = 0 from the summation give

1 1
€b — 6y = :——2‘ Qrz0

o n v

D3PI

[1 + (_l)n—vlg(n, v, 8)

1 O"e,
.Kn’ (bz"“"by"’bz‘)o (9)

where ((n, v, 8) is again given by equation (4). Similarly if the
wall is above rather than below d4

1 1
€y — €y = <—€' - E) quz0

o

- Si E i Z 1+ (=1n,v,s)
T v=08=0

n=1
1 ore,
o— 10
K" (bz"-”ay'-'az:)., (10)

Equations (4), (6), (9), and (10) give the general expressions for
the heat flux in the gas and for the energy jumps at the walls. It
should be noted that the expression for the heat flux is strictly
accurate only for regions at least a radiation mean free path away
from the walls, inasmuch as the integration in equation (3) was
carried to infinity. However, as is done for heat conduction in
rarefied gases, we use the equation throughout the gas and ac-
count for the effects of the walls by introducing jump boundary
conditions.

In the remainder of the paper we will neglect terms in the series
of higher order than the second. (Terms containing zero, first,
and second derivatives are retained.) From equations (4), (6),
(9), and (10) we then obtain

4 Oe,
g = —— — 11
. 3x, Oz (11)

(L1, L (%
e o = € 2 e 2,2 \ 022 /,

1 o%, 1 Ole,
— — 12
+ 4«,* ( ay’ )o + 4,2 ( ox? )o ( )

for a wall below the gas, and

1 1 1 [d%,
€y — = - T 5 vi0 T o .\ = o

T e € 2 Guo 2x,2 \ 022 /,
1 2 1 %,
45,2 \ 012 /o 4k, \ or* /,

for a wall above the gas. The subscripts 0 are omitted in equation
(11) because that expression for the heat flux is used throughout
the gas. It is correct to second order because the terms contain-
ing second derivatives are zero. LEquation (11) was obtained by
Rosseland [2] and is generally known as the Rosseland approxi-
mation. The first term on the right side of equation (12) or (13}

was obtained by Shorin [4]. However, his results differ from
those obtained here even when the second degree terms are
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neglected, because he used an expression other than equation (11)
for the heat flux close to a wali.

Equations (11) to (13) apply to a single frequency ». They can
be integrated over sll frequencies to obtain equations involving
the total radiative heat flux and the total emissive power. The
spectral emissive power e, can be written as a function of » and the
total emissive power ¢, = T4 by writing Planck’s distributien

nissive 1A te1in

function in the form

2xhy?
c? exp [hmrl/ ‘k“le,“/'] -1

(14)

€y =

Thus consider e, in equations (11) to (13) to be a function of » and
¢,, and apply the rules of partial differentiation of composite func-
tions. If we multiply the equations by dv and integrate from 0 to
o, we obtain

(15)

K,
~(r_1 1 (9% I (2
e e”""(e 2>q”+2x,=(az:)o+2 z).,
1), (o), 1 (%) , (o)
+4x,’(by’>o+4(by>o+4x,’(bz’ o+4 oz /o
for & wall below the gas, and
(L1, L (o) I3
wTe=\e "2/ Taa\o2 T 2\ 22/,
__1_(3’_’% _1(?&)’ 1 (b’e, _1 9_61)’
4x,2 \ oy® /o 4 \ oy /o &2\ 0zt /o 4 \oz /o

(17)
for a wall above the gas, where
1 ® y
— = f —l bi dv (18)
K, o K D¢
1 ® 1 Oe,
— = — —dv 19
K2 j; K2 e, (19)
© 2,
I= f 1 %%, (20)
o kP oet

The derivatives of e, with respect to e, in these equations are ob-
tained from equation (14). For a gray gas, «, is independent of v
and equation (20) becomes

12 (" 1 %
=== - 2% 21
= ,,j; exdv 0 (21)

For a nongray gas it is, of course, necessary to know «, as a func-
tion of v and e, in order to evaluate equations (18) to (20). The
Rosseland mean absorption coefficient x, has been calculated for
high temperature air in reference |8].

In the following sections equations (15) to (17) will be used for
the solution of a few illustrative probleme

Hlustrative Examples and Comparison With Exact Solutions

Stationary Abscrbing Gas Between Walls. Consider first the ra-
diant heat transfer in a stationary gas bounded by two infinite,
plane, parallel walls at horizontal planes 1 and 2. For this case
g, is independent of 2, the direction normal to the walls, so that
equation (15) can be integrated to give

3k,
en — €, = -4—q,z (22)

or
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- 3k, L , (23)
q, 4

€y — €2

where L is the distunce between the plates and «, is assumed
constant. From equations (16), (17), and (22) the energy jumps
at the walls are

e — € 1 1 9
T T e T3t el (24)
and
€g2 — 1 1 9
Jﬂq—m = T3 T peted (25)
z 2 -~

Note that the second and higher order derivatives in equations
(16) and (17) are O for this case. Adding equations (23) to (25),
and taking the reciprocal of the result give

4, _ 1
o(T it — Tyot) 3k,L + _1_ 4
4 €1

26
1 (26)
——1

€2

where e, has been replaced by its equivalent, o7',4

Equation (26) is plotted against optical thickness «,L for
several values of wall emissivity in Fig. 2. Also plotted for com-~
parison are an exact solution from reference [6], the usual dif-
fusion approximation which neglects the energy jumps at the
walls (equation (23)), and Shorin’s result [4].

The improvement of the diffusion approximation by introduc-
tion of jump boundary conditions is considerable, the agreement
with the exact solution being within 5 percent for all values of
kL. The agreement of the present analysis with the exact solu-
tion is also considerably better than that from reference [4], the
latter giving values of heat flux about 25 percent too low for large
values of L. The same comment applies to the results of
reference [5].

As the wall emissivity decreases, the radiant heat transfer for a
given temperature difference decreases. This is because the heat
transfer for a given energy jump at the wall decreases as € de-
creases (equation (24)). It is of interest that equation (26) re-
duces to the correct form for heat transfer between walls with no
absorbing gas when L = 0.

Consider next the case where the walls are cylindrical and con-
centric rather than plane. In this case the heat transfer per unit
area ¢ is inversely proportional to radius, and equation (15) can be
integrated to give

3k, T
eq — e, = 1 In —rl— 27)
or
P L B (28)
o 4 "

vhere the subscripts 1 and 2 refer, respectively, to the inner and
outer radii. The energy jumps at the inner and outer walls are
obtained from equations (16) and (17). The derivatives in those
equations are obtained by setting r = (2* 4+ ¥2)'/* in equation
(27), differentiating, and settingy = 0. Thus

3k,
16k,

9
+ 32 K. qd (29)

and

€= €2 T l l 3k, 9 [/ r\2 .
@ on <Ez 2) 16k2r2 32 <r2) xiul(30)
Addition of equations (28) to (30) and use of the relation r; =

L/[(r2/r1) — 1], where L is the radial distance between the walls,
give
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For smull heat flux the last term can be neglected.

A plot of the reciprocal of equation (31) for «,/k, = 1, small heat
flux, and for various values of radius ratio and wall emissivity is
given in Fig. 3. For k,L = 0, the correct expression for ¢1/ [o(T w1
= TuM)is 1/({1/a) + (rn/re)[(1/e2) — 11} if the reflection is
diffuse. Thus equation (31) reduces to the correct expression for
kL. = 0 only when r;/r, = 1. This is perhaps not surprising be-
cause the series in equations (6), (9), and (10) was truncated at
terms of order two. For the case of the plane plates the higher-
order derivatives were zero, but here they are all nonzero. In
order to give an idea of the range of values of «,L for which the
present approximation is valid, curves for the Monte Carlo solu-
tion of Perlmutter and Howell [9] are plotted dashed in Fig. 3.
It is evident that the approximation is good at rather low values
of kL when ro/r is not too large. As ry/r, increases, the range of
its applicability moves to higher values of x,L. However, in all
cases the improvement over the usual diffusion approximation is
considerable. Comparison of these results with the Monte Carlo
solution indicates that they could be extrapolated to lower values
of kL by drawing a smooth curve which is tangent to the curve for
the present results and which intersects the known correct ordi-
nate for x,L = 0.

9 gl (KrL)’[

—— PRESENT ANALYSIS

—=—= MONTE CARLO SOLUTION,
REF (9]

—~ USUAL DIFFUSION

APPROXIMATION (rp /r, =10)

a/[o(rws- )]

§=e€x=l ra/r =10

PR PR N RV R S R TR B
6o 2 3 4 5 6 7 8 9 1Ic
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Fig. 3 Thermal radiation between concentric cylindrical surfaces with
intervening stationary gas. Solid curves calculated from equation (31)
for small heat lux and x-/x: = 1.

For large values of ro/r; it may be reasonable to plot g1/[0(T !
— T'w2*)] against «,r; rather than against x,.L. Using the relation
kry = KL/[(re/r1) — 1] and Fig. 3, we note that the present solu-
tion for rz/ry = 10 is in good agreement with the Monte Carlo
solution for values of «,7; as low as 0.7. That is, the solution is
valid until the radiation mean free path becomes somewhat larger
than the inner cylinder radius. From this point of view the
agreement, even for r/r; = 10, seems to be exceptionally good.
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Absorbing Gas With Heat Sources and Flow. Next a simplified
vergion of the radiation to or from a gas containing heat sources
and flowing between two parallel walls will be considered. The
net rate of heat flow out of a unit volume V- ¢ can be equated to
the heat source within the volume Q' minus the rate of change of
enthalpy within the volume pc,DT/Dt. From equation (15), the
heat flow vector ¢ is —(4/3«,)Ve,, if we consider only radiant heat
transfer. Thus the energy balance becomes

DT

4
- = c. 2o
> Dt

3, (32)

4
V-Ve, = —o= Vi, = Q' — p

where the properties are assumed constant. Equation (32) will,
of course, be the same as the heat conduction equation if we re-
place 4/3k, by the thermal conductivity and e, by the tempera-
ture. For steady-state conditions and velocities in the z-direc-
tion only, the substantial derivative in the last term becomes
u dT/dz. 1f we neglect heat transfer in the direction of motion,
as is usually done for heat conduction in moving fluids, equation
(32) becomes

4 0%,
3k, 022

oT
=_Q'+PC; _"=A

oz (33)

1n order to simplify the problem we consider the case where A is
independent of z and the two walls are at the same temperature.
Then, if z = 0 at the center of the channel, one integration of
equation (33) gives

3;4'(: z - Az (34)
Another integration gives
€, — €y = :i%'—-)‘ 22 (35)
or
€0 = €y = 3";);” (36)

where the subscript O refers to conditions in the gas at the wall, ¢
refers to the center of the channel, and L is the width of the
channel. Evaluation of equations (15) and (34), at the wall gives

= 2
A= 7 (37)
so that
€0 — € _ 3
o "1 kL (38)

The energy jump at the wall is given by equation (16) where the
derivatives at the wall are obtained from equations (35) and
(37). Thus

e, — €xp 1 1 3k, 9 .
= — - = — 39
% e "2 T aar T gl (39)
and
ot —-TY 3 1 1
Qv 16 xL + € 2

( “' )’ 9 qwl
! —~ a7/ e KA 40
4K,L 32(L’)(r ) ( )

A plot of the reciprocal of equation (40) is given in Fig. 4 for
x,/x, = 1, small heat flux, and for several values of ¢. Included for
comparison are curves for the Monte Carlo solution of Howell and
Perlmutter {10] and the usual diffusion approximation without
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Fig. 4 Thermal radiation from flat channe! walls to flowing gas with
heat sources. Solid curves calculated from equation (40) for small heat
flux and «fxe = 1.

jump boundary conditions, equation (38). The agreement be-
tween the present modified diffusion solution and the Monte
Carlo solution is reasonably good over the entire range of values
of k,L, the agreement, of course, being best for the higher values of
kL. Comparison of these curves with that for the usual dif-
fusion approximation shows, a8 in the preceding cases, the con-
siderable effect of the energy jump at the wall.

Fig. 4 can be used to estimate the radiant heat transfer pro-
duced by injecting smoke or particles into the gas stream. The
ordinate in Fig. 4 can be written as (T, — T.)/(T* — T Mo,
where the heat-transfer coefficient b = ¢,/(T, — T,) is based on
the difference between the wall and center line temperatures. If
sufficient smoke is injected into the stream to produce a L of
about 2, Fig. 4 indicates that, for temperatures on the order of
4000 deg F, heat-transfer coefficients on the order of 500 Btu/
(hr)(ft*)(deg F) might be obtained. It would not be expected
that the introduction of the smoke would greatly affect the pres-
sure drop, so that this appears to be a possible way of obtaining
very large heat-transfer coefficients in a gas without correspond-
ingly large friction factors.

If we consider a tube, rather than a channel, equation (32) or
(33) can be written in cylindrical coordinates as

41 d [ de,
— = —(r2)= 41
3, 1 dr('dr) A “n
Solution of this equation gives
3x.9,
€ ™ €pe = 4D r? (42)

The energy jump at the wall is obtained from equation (17) (g =
—g,) and the derivatives at the wall in that equation are calcu-
lated by setting r* = 22 + y? in equation (42) and letting y go to
zero after differentiating. The final equation is

o(T, =T 3D 1 1

G 16 € 2
? (i)’ 9 gt
T ap ta pr P

A plot of the reciprocal of equation (43), together with the Monte
Carlo solution of reference [9], is plotted in Fig. 5. Good agree-
ment between the two solutions is indicated.

For a gaseous sphere containing heat sources, we can write
equation (32) or (33) as

41 d de,
3k 12 dr(r dr)-k
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Fig. 5 Thermal radiation from tube to flowing gas with heat sources.

Solid curves calculated from equation (43) for small heat flux and
Krfke = 1,

and

3
= e = %"r’ (45)
For this case we obtain the derivatives in equation (17) by setting
r? = 2% + 42 4 22 in equation (45) and letting ¥ and z go to zero
after differentiating. The final equation for the sphere is
oTe* = TeY) 3D 1 1

' 16 € 2

K, \?
° _<~—.> L2
2x,D 32 D*

Note the similarity between equations (40), (43), and (46).

As a final example consider a radiating gas flowing in an
annulus which is heated at the inner radius r, and cooled at the
outer one r,. Integration of equation (41) between r, and r; and
use of equations (16) and (17) gives, for this case,

T2
1 -2
o(Twr* — T _ 3L In <Tl)

©G)-]

+ (x.D)* (46)

+ 16« L

[ -G

9 ol - (Y
s [- (@] @

(O

where L is again the difference between the inner and outer radii,
and A is defined by equation (33). Equations (47) and (48)

and
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might, for instance, be used to estimate the heat transfer from an
arc of radius r, to an absorbing gas flowing along it through a tube
of radius r,.

Concluding Remarks

By using second-order jump boundary conditions at walls, the
range of validity of the diffusion approximation is extended to
comparatively low values of optical thickness. For radiant heat
transfer in a stationary gas between flat surfaces, the method
gives good results for all values of optical thickness. For con-
centric cylindrical surfaces good results are obtained for moderate
and high values of optical thickness, but the method breaks down
before an optical thickness of zero is reached. The results im-
prove as the radius ratio gets closer to 1.

For heat trapsfer from parallel plates or from a tube to a
moving gas with heat sources, the method gives reasonable re-
sults for all values of optical thickness. The results for this case
indicate that very high heat-transfer coefficients might be obtained
by introducing smoke or particles into a gas flowing in a passage-
at high temperatures. The effect of wall emissivity, which is
neglected in the usual diffusion approximation, is accounted for in:
the present method. The results can be applied to a nongray gas:
if the spectral absorption coefficient of the gas is known as a func~
tion of frequency and temperature.
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DISCUSSION
J. R. Howell2 and M. Perimutter?

The discussers have applied the diffusion approximation with
jump boundary condition as given here to the case of radiant
transfer through a real gas with temperature dependent absorp-
tion coefficient,® and some points which may prove helpful were
found.

Generally, although a gas may be highly absorbing on the aver-
age, there are usually windows in the spectrum where the gas is
relatively transparent. In equations (18)-(20), if «, is zero any-
where in the spectrum, the integrals become improper and invali-

2 National Aeronautics and Space Administration, Lewis Research
Center, Cleveland, Ohio.

3J. R. Howell and M. Perlmutter, “Monte Carlo Solutions of
Radiant Heat Transfer in a Nongrey Nonisothermal Gas With
Temperature Dependent Properties,” Presented at AIChE National
Meeting, 8an Juan, Puerto Rico, October 2, 1963.
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date the results. If the derivation is carried out over a wave-
length interval Av, rather than the entire interval, it is found
that these equations become:

K, e,

L
e

Ay ae”

1 Oe,
— — dv

dv

(30)

J.

I Ay = [ be, * (;) 1)
f — dv]

Ay beﬂ
which reduce to Deissler’s equations as Av approaches the range
00—,

Using these equations, the analysis can be carried out for the
strongly absorbing wavelength band. The effects due to the
remaining part of the spectrum can be obtained by assuming the
gas to be transparent or by using the transparent approximation
in this part of the spectrum. This is discussed more fully in foot-
note 3.

If the gas absorption properties are strongly temperature de-
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pendewt, assuming one constant value of «x,,a, though the gas
may lead to considerable error. We can assume «,,5, as defined
by equation (49) to be a polynomial of the form:

k.av = A+ BZ +CZ* + ...

for the one-dimensional problem, where Z is the coordinate along
which «,,s, varies. This of course requires an iterative solution
since the coefficients are determined by the temperature distribu-
tion.

Author’s Closure

The author would like to thank the discussers for their interest
in the paper. Their suggestion for the treatment of windows in
the spectrum should be helpful to those interested in applying
the method in such cases. As implied by the discussers, the
diffusion approximation does not generally apply for such win-
dows. In fact it should be used with some caution for any
region of the spectrum where the gas is not optically thick, even
though the overall optical thickness may be high. The same
caution should be used when the absorption coefficient is small
or zero over a portion of the gas space, even though it may be
high over most of the space. It should also be kept in mind that
the derivation was carried out for the case where the absorption
coefficient is effectively constant over a radiation mean free
path. More work needs to be done to determine whether or not
the equations must be modified when that is not the case. The
method works best, of course, at very high temperatures and for
thick gases. When the gas contains smoke or particles, those
conditions can usually be relaxed to some extent.
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